Fundamentals and Technology of Advanced Materials Course Syllabus

The course covers following topics:

Session & Time	Topic	Learning Outcome	Lecturer
	Functional Materials	By the end of this	Dr. Shibghatullah
08:00-10:00	for Energy Conversion	course, participants are	Muhammady
Mon, 5 Aug 24	from Electrochemistry:	able to describe the	(Institut Teknologi
	• Fundamental	fundamental concepts of	Bandung, Indonesia)
	concepts of	electrochemistry. They	
	Electrochemistry	can explain the different	
	Functional Materials	types of functional	
	for Energy Conversion	materials used in energy	
	(types and properties)	conversion, and their	
	• Applications of	selection criteria based	
	Functional Materials	on properties like	
	• Advances and	conductivity, stability,	
	Innovations	and efficiency.	
		Participants can identify	
		and discuss the role of	
		functional materials in	
		various applications.	
		They are also able to	
		analyze recent	
		developments and future	
		trends in the field, and	
		engage in informed	
		discussions about the	
		potential and	
		significance of functional materials in	
		alactrochemical energy	
		conversion	
	Graphana & CNT	By the and of this course	Drof Dr. Toto
14.00-16.00	grown by Plasma	by the end of this course, participants are able to	Winata
Mon 5 Aug 24	Enhanced Chemical	describe the properties	(Institut Teknologi
Mon, 5 Mug 24	Vanor Deposition	and atomic structure of	(Institut Texhologi Bandung Indonesia)
	Method:	graphene and carbon	Dandung, muonesia)
	• Fundamentals of	nanotubes and explain	
	Graphene and Carbon	the principles and	
	Nanotubes	advantages of Plasma	
	• Plasma Enhanced	Enhanced Chemical	
	Chemical Vapor	Vapor Deposition	
	Deposition (PECVD)	(PECVD). They can	
	• Growth of Graphene	detail the step-by-step	
	and CNTs Using	PECVD processes for	
	PECVD.	growing graphene and	
	• Applications and	CNTs, including key	
	Future Trends	parameters and	
	-	optimization factors.	
		Participants are able to	
		identify specific	

		applications of PECVD- grown graphene and CNTs in various industries, discuss emerging trends and future research in PECVD technology, and engage in informed discussions about the future and potential of PECVD in nanomaterials	
08:00-10:00 Wed, 7 Aug 24			Prof. Andrivo Rusydi., Ph.D. (National University of Singapore)
14:00-16:00 Wed, 7 Aug 24	 Nanomaterials and Beyond Definition and properties of Nanomaterials Synthesis and fabrication of nanomaterials Applications of nanomaterials in the future Some case studies 	By the end of this course, participants are able to describe the properties and types of nanomaterials, explain synthesis and fabrication methods, and identify key applications in medicine, electronics, and energy. They can discuss emerging trends, evaluate environmental and ethical considerations, and analyze real-world case studies. Participants are also prepared to engage in informed discussions about the future of nanomaterials, demonstrating a comprehensive understanding of the subject.	Dr.rer.nat. Akfiny Hasdi Aimon (Institut Teknologi Bandung, Indonesia)
14:00-16:00 Tue, 6 Aug 24	Drops dance and explode on lubricated surfaces: • Background and Traditional Methods of Coulomb explosions	By the end of this course, participants are able to describe traditional and novel methods for observing Coulomb explosions, explain the experimental setup and observations using the	Dr. Dan Daniel (King Abdullah University of Science and Technology)

	 New Approach to Observing Coulomb Explosions Coulomb Explosions in Sessile Drops Influence of External Electric Fields Potential applications 	new method, and discuss the influence of small external electric fields on jetting direction. They can analyze the diverse length and time scales of Coulomb explosions and identify potential applications in nanoscopic material fabrication and electrospray ionization. Participants are also prepared to engage in informed discussions about the implications and future research directions of this novel observation method.	
08:00-10:00 Thu, 8 Aug 24	Semiconductor - based Photocatalyst: Challenges and Opportunities: • Principles of photocatalysis • Semiconductor Materials for Photocatalysis- properties and characteristics • Challenges in Semiconductor- Based Photocatalysis • Opportunities and Advances in photocatalytic materials	By the end of this course, participants are able to describe the principles and mechanisms of photocatalysis, identify common semiconductor photocatalysts and their properties, and discuss the challenges associated with their efficiency, stability, and scalability. They can also analyze recent advances and opportunities in the field, including innovative applications and future research directions, and engage in informed discussions about the potential and challenges of semiconductor-based photocatalysts.	Dr. Osi Arutanti (Research Center for Chemistry, National Research and Innovation Agency)
14:00-16:00 Thu, 8 Aug 24	 Novel materials for Next Generation Solar cells: Basic Principles of Solar Energy Conversion Traditional vs. Novel Solar Cell Materials 	By the end of this course, participants are able to describe the basic principles and types of solar cells, including traditional and novel materials. They can identify the advantages and challenges of novel materials such as	Prof. Lydia Wong (Nanyang Technological University)

	 Advantages and Challenges of Novel Materials- Perovskite solar cells, Quantum dot solar cells, Organic photovoltaic cells (OPVs), Dye- sensitized solar cells (DSSCs). Advances and Future Directions 	perovskites, quantum dots, organic photovoltaics, and dye- sensitized solar cells. Participants are also able to discuss recent advancements and future directions in solar cell technology, and engage in informed discussions about the potential and challenges of next- generation solar cells.	
14:00-16:00 Fri, 9 Aug 24	 Artificial Intelligence for Battery (tentative): Fundamentals of Battery Technology- Basic principles and key performance indicator Introduction to Artificial Intelligence (AI) AI Applications in Battery Technology- design, management system, and quality control. Case Studies and Recent Advances 	By the end of this course, participants are able to describe the basic principles of battery technology and key performance metrics. They can explain fundamental AI concepts and their applications in engineering. Participants are able to identify and discuss how AI is used in battery development, management systems, and manufacturing. They can also analyze real- world case studies and emerging trends, and engage in informed discussions about the potential and challenges of AI in advancing	Dr.Eng. Muhammad Syafrudin (Sejong University, Korea)
08:00-10:00 Mon, 12 Aug 24	 From Structural Ceramics to Multifunctional 2D Materials: Evolution from MAX Phases to MXenes: Fundamentals of Structural Ceramics Introduction to MAX Phases and its applications Evolution from MAX Phases to MXenes Multifunctional 	By the end of this course, participants are able to describe the fundamentals of structural ceramics and their properties, explain the concept of MAX phases and their applications, and understand the evolution from MAX phases to MXenes. They can identify the properties and applications of MXenes, including their	Pipit Fitriani, Ph.D (Institut Teknogi Bandung)

	Capabilities of MXenes	multifunctional	
		capabilities and recent	
		advancements in	
		research Participants are	
		also prepared to engage	
		in informed discussions	
		about the future potential	
		about the future potential	
		and challenges of	
		MXenes and their impact	
		on material science.	
	Critical minerals-based	By the end of this course,	Dr. Aditya Farhan
14:00-16:00	advanced materials:	participants are able to	Arif (Mining
Mon, 12 Aug 24	Global outlook, value	describe what critical	Industry Indonesia)
	chain, and key strategies	minerals are and their	
	for industrial	importance in advanced	
	development:	materials. They can	
	• Definition and	explain the global	
	importance of	outlook, including	
	Critical	market trends and	
	Minerals	geopolitical factors	
	Global Outlook on	affecting critical	
	Critical Minerals-	minerals. Participants are	
	market demand	able to outline the value	
	trends, political and	chain from exploration to	
	tiends, political and	end-use applications and	
	economic factors.	discuss key strategies for	
	• Key Strategies for	industrial development	
	Industrial	including supply chain	
	Development	resilience technological	
		advancements and	
		nolicy considerations	
		They are also propored to	
		in informed	
		engage in informed	
		discussions about the	
		future challenges and	
		opportunities in the field	
		of critical minerals and	
		advanced materials.	
00.00 10.00	Crystal Structure	By the end of this course,	Dr. Stevin Pramana
08:00 - 10:00	Modulation of Energy	participants are able to	(Newcastle
Tue, 13 Aug 24	Conversion Oxide	describe the basics of	University, UK)
	Electrolytes:	oxide electrolytes and	
	• The	their role in energy	
	Fundamentals	conversion devices. They	
	and The Role	can explain how different	
	in Energy	crystal structures impact	
	Conversion	the properties and	
	• Crystal Structures of	performance of oxide	
	Oxide Electrolytes	electrolytes. Participants	
	Modulation	are familiar with various	
	Techniques	techniques for	

	• Applications in	modulating crystal	
	• Applications III	atructures such as	
	Energy Conversion	doning strain	
	Devices (Fuel cells,	doping, strain	
	battery, and other	engineering, and	
	devices).	nanostructuring, and can	
		analyze case studies	
		demonstrating the	
		benefits of these	
		techniques. They	
		understand the	
		applications of	
		modulated oxide	
		electrolytes in fuel cells,	
		batteries, and other	
		energy conversion	
		devices and can engage	
		in informed discussions	
		about the potential and	
		challenges of crystal	
		structure modulation.	
	Bond order redefinition	By the end of this course	Dr. Ibnu Svuhada
14.00-16.00	needed to reduce	participants are able to	(Yayasan Cahaya
Tue 13 Aug 24	inherent noise in	describe the	Putra Ilmu)
140, 15 1145 21	molecular dynamics	fundamentals of	i utra inita)
	simulations:	molocular dynamics	
	• Decise of	simulations and the role	
	• Basics of	of hand order. They can	
	Durania	identify the challenges	
	Dynamics	identify the chaneliges	
	Simulations-	and minitations of	
	fundamentals	traditional bond order	
	and role of	definitions and	
	bond order	understand the need for	
	• Challenges with	redefinition to reduce	
	Traditional Bond	inherent noise.	
	Order Definitions-	Participants are able to	
	inherent noise and	explain the proposed	
	limitations	redefinitions, their	
	• Redefining Bond	implementation, and	
	Order	their impact on	
	• Case studies and	simulation accuracy.	
	applications	They can analyze case	
	upproduoiis.	studies and discuss the	
		potential benefits and	
		challenges of adopting	
		new bond order	
		definitions in molecular	
		dynamics simulations.	

	Density functional	By the end of this course,	Dr. Erik Bhekti
08:00 - 10:00	theory for nanomaterials	participants are able to	Yutomo
Wed, 14 Aug 24	development:	describe the fundamental	(Universitas
	• Basics of	concepts of Density	Diponegoro)
	Density	Functional Theory	
	Functional	(DFT) and its	
	Theory-	applications in	
	fundamental	nanomaterials	
	concepts and	development. They can	
	methods/appro	explain how DFT is used	
	ximations	to optimize nanomaterial	
	 Applications of DFT 	structures, predict	
	in Nanomaterials	electronic properties, and	
	 Case Studies and 	study surface	
	Examples	interactions. Participants	
	• Future Directions and	are also able to analyze	
	Innovations-advances	case studies where DFT	
	and emerging trends	has been applied to	
		nanomaterials, discuss	
		the challenges and	
		functions of DF1, and	
		explore luture	
		innovations in the field	
	MES (A1/DoxSr1	By the and of this source	Duct Incomen
08.00 10.00	VIFS (AI/DAXSI1- xTiO3/Si) structure and	By the end of this course,	PIOL IIZaillail (Institut Pertanian
Thu 15 Aug 24	its application for	describe the MES	(Institut Fertainan Bogor)
111u, 15 Aug 24	ferroelectric sensors	$(\Lambda 1/B_2 Sr. TiO_2/Si)$	Dogor)
	Basics of MES	(Al/ Da _x SI _{1-x} 11O ₃ /SI)	
	• Dasies of Miris	the role of each layer	
	overview and	They can explain the	
	properties	properties and behavior	
	 Ferroelectric Materials 	of $Ba_{x}Sr_{1}$, TiO_{2} as a	
	and Their Properties	ferroelectric material and	
	• MFS Structure	its integration with Al	
	Fabrication and	and Si in the MFS	
	Characterization	structure. Participants are	
	methods.	also able to discuss	
	• Applications of MFS	fabrication techniques,	
	Structures in	characterization	
	Ferroelectric Sensors	methods, and	
		applications of MFS	
		structures in ferroelectric	
		sensors, including real-	
		world examples and case	
		studies. They can engage	
		in informed discussions	
		about the potential and	
		challenges of using MFS	
		structures for various	
		sensing applications.	

	Physics mindset to	By the end of this course,	Dr. Ahmad Fauzi
14:00-16:00	develop farmers in	participants are able to	(Pusat Penelitian
Thu, 15 Aug 24	villages (holistic	describe how a physics	Kelapa Sawit-RPN)
	approach: science,	mindset can be applied to	_
	technology,	agricultural	
	business, social):	development, integrating	
	• Physics	scientific, technological,	
	Mindset and Its	business, and social	
	Relevance	aspects. They can	
	• Scientific Approaches	explain basic scientific	
	to Farming	principles relevant to	
	 Technological 	farming, identify	
	Integration-tools,	technological tools and	
	techniques, and	their applications, and	
	efficiency	understand economic	
	• Business and	factors and business	
	Economic Aspects	models for farmers.	
	• Social and	Participants are also able	
	Community	to discuss the role of	
	Development	social infrastructure and	
	F	sustainable practices in	
		holistic farming	
		development. They can	
		engage in informed	
		discussions about the	
		benefits and challenges	
		of implementing these	
		approaches in rural	
		farming communities.	